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Abstract-A theory for laminated composite shells and a finite element model based on this theory
are presented. Due to a flexible layer-wise description of the displacement field, the theory accounts
for an accurate description of the shear deformation and the stretching of transverse normals to the
middle surface. With respect to other layer-wise theories which are available in the literature, the
present one distinguishes itself by the use of the penalty method to enforce the perfect bonding
between adjacent layers. This method offers the possibility to easily obtain accurate interlaminar
stresses. Numerical results for simply supported laminated spherical shells are presented to show
the features of the proposed theory and its accuracy.
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middle surface of the laminated shell (Fig. I)
coordinates along the lines of curvature ofn
lengths of the lines of curvature ofn (Fig. I)
coordinate normal to n
principal radii of curvature ofn
total thickness of the laminated shell (Fig. I)
coefficients of the first fundamental form ofn
number of layers composing the laminated shell (Fig. I)
middle surface of the Kth layer
coordinates along the lines of curvature of n(K)

coordinate normal to nlK)

unit vectors tangent to the OIK) and Or) lines
unit vector normal to n(K)

principal radii of curvature of n(K)

thickness of the Kth layer (Fig. I)
(-coordinate of the points of n(K)

coefficients of the first fundamental form of n(K)

surface forces applied on the bottom surface (S+) and on the top surface (S-) of the laminated
shell.

Roman lower case subscripts (e.g. i, j) are assumed to range over integers 1,2,3, while Greek lower case
subscripts (e.g. ex, P) are assumed to range over the integers 1,2. The range ofthe capital subscripts and superscripts
will be explicitly stated in the text.

I. INTRODUCTION

The increasing use of laminated composite structures in several engineering applications
has generated considerable interest among many researchers to formulate refined theories
for the analysis of such structures. A majority of these theories deals with laminated
composite plates, while a more restricted number of theories have been proposed for
laminated composite beams and shells. In the context of the displacements based theories,
we can identify two different categories of formulations. The first category consists of
formulations which model the laminated structure as an equivalent single layer structure
and use the kinematic assumptions of the classical theory of beams, plate or shells or a
suitable refinement of them (see, for example, Christensen et al., 1977; Murthy, 1981;
Reddy, 1984a, b, c; Reddy and Liu, 1985; Reddy and Chandrasekhara, 1987; Bhimarradi
et al., 1989; Ascione and Fraternali, 1990). The second category of theories assumes that
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the thickness approximation of the displacements field can be accomplished via a piecewise
approximation through each individual lamina (layer-wise theories). This kind of for
mulation was introduced by Reddy (1987) for laminated composite plates and extended to
laminated composite cylindrical shells by Reddy and Barbero (1990). Similar theories have
appeared in the literature (Sreenivas, 1973; Murakami, 1984; Hinrichsen and Palazzotto,
1986; Yuan and Miller, 1989; Tralli et al., 1990; Ascione and Fraternali, 1992).

The major difference between the above two categories is that layer-wise theories model
inplane and transverse shear deformations in a more accurate way. Furthermore, they offer
the possibility to compute interlaminar stresses (Reddy et al., 1989), which cannot be
predicted in an efficient way by a single layer theory, since it does not allow for possible
discontinuities in strains at an interface of dissimilar layers.

This study presents an original theory of laminated shells. The theory is based on the
following fundamental assumptions: (a) the displacement field can be chosen independently
in each individual layer, like in the layer-wise theory of Reddy (1987); (b) the layers are
perfectly bonded one to another and the bonding constraint is imposed via penalty method.
From a mechanical point of view, the penalty method is equivalent to the introduction of
an auxiliary model (penalty model), in which the layers are connected by radial and
transverse springs. Letting the stiffness of such springs have a large value, it is possible to
achieve perfect bonding between layers. A similar theory was proposed by Ascione and
Fraternali (1992) for the analysis of laminated curved beams. Alternatively to the penalty
method, two other techniques can be utilized to enforce the bonding constraint between
layers. The first consists of using constraint equations to reduce the number of independent
kinematical variables (Reddy, 1987) ; the second consists of the Lagrange multiplier method.
This last method leads one to identify the interlaminar (tangential and radial) stresses as
the Lagrange multipliers and to formulate a theory in which these quantities are independent
variables as well as the generalized displacements of the layers. Differently, the first tech
nique compels one to post-process the results in terms of displacements, via equilibrium
equations, to obtain interlaminar stresses (Reddy et al., 1989). It can be shown (see, for
example, Malkus and Hughes, 1978; Carey and Oden, 1983; Reddy, 1992a,b) that the
penalty method proposed in this work produces an approximation of the interlaminar
stresses, which can be identified with the reactions of the springs interposed between layers
in the penalty model. The advantage of the penalty method consists of the possibility
to easily compute accurate interlaminar stresses, without assuming them as additional
independent variables or using the equilibrium equations.

Besides that for the computation of displacements and interlaminar stresses, the theory
proposed in this study can be used to evaluate stress distribution within the different
layers of a laminated shell. Indeed, once displacements and interlaminar stresses have been
computed, it is possible to derive inplane stresses directly from the constitutive equa
tions and transverse stresses by post-processing the results via equilibrium equations (see
Section 3).

To verify the accuracy of the theory proposed, the present study also contains a finite
element approximation of the theory and some numerical results for laminated spherical
shells. These results are compared with those obtained by Reddy (1984c) and by Reddy et
al. (1989).

2. FORMULATION

2.1. Kinematical assumption
Let us consider a shell made up of N orthotropic layers (Fig. 1). We assume that the

displacement field of the generic layer, say the Kth one,

(1)

can be expanded as a suitable function of powers of the thickness coordinates ((Kl :
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Fig. 1. Laminated composite shell.
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(2a)

(2b)

(3a)

(3b)

In developing the governing equations we leave unspecified the orders A(K) and B(K)

of the series expansions in (2). These orders will be specified in the numerical applications
in relation to the magnitude of the ratios thickness-to-Iength and thickness-to-radius. We
set C(K) = sup {A(K), B(K)}.

By setting A(K) = 1 we obtain, for the layer under consideration, the first order shear
deformation theory, while by setting B(K) ~ 1 we account for a stretching of the normals
to the middle surface. In particular, the case A(K) = B(K) = 2 corresponds to the Hildebrand,
Reissner and Thomas theory (1949); the case A(K) = 1, B(K) = 2 corresponds to the theory
of Naghdi (1957).

By making use of eqn (1), we obtain the following expansion of the displacement
gradient:

where

C(Kl_!

Vu(K1il(K) = I~K) + L dW,
S~l

(no sum on IX), (4a)

(4b)

(5a,b)

d(K) - _1_ o<pSfl R - 1 C(K) d
S
(K

3
) = ,J.S(K+) 1 S 1 C(K) 1

Ra - a~Kl 08~K) -, •.. " 'f' = "",. -. (6a, b)

V(K) being the vector collecting V(K) V(K) V(K) and ,J.(K) the vector collecting ,J.(K) ,J.(K) ,J.(K)I , 2 ,3 'f'T 'f'T1 , 'f'T2, 'f'T3·

Making use of the formulae for the derivatives of e\K), e~K) (see, for example, Naghdi,
1972; Dym, 1974), we obtain the following expressions of the components of the vectors
defined by eqns (5)-(6) with respect to e~K), i1(K):
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I OV\K) V~K) oa\K) V\K)
dtKJ OO\Kl + a\K)a~K) OO~K) - R\K)

1 ov<.j0 V{IK) oa\K)
a\K)' aO\Kl - ~(t)a~Kl afN·)

I OV\K) V\K)
~(IK) OO\K) + R«()

(7a)

(7b)

l¢IKI}

{I IKl\ _ ,/,i;)
3 J - '1'12 ,

,/,IKl
'1'13

(7c)

{d)fl} =

1 a¢~K( ¢)fl aa\K) ¢~Kl

a\K) ae\K) + a\Kla~K) a(N) - R\K)

I o¢)fl ¢~K( aa\K)
dtKl aOlt) - a\K) a~K) aO~Kl

I a</>~Kj </>)fl
tJ)KlfJO\K) + RY)

R = I, ... , CIK) ,

R= I, ... ,CIK),

(8a)

(8b)

{

'/'IK) }'l'S+ 1.1

{dW} = </>~KJ 1.1

</>~K~ 1.3

S = 1, ... , CIK) - 1. (8c)

It is understood that in eqns (8) the quantities </>~~) have to be considered only if
p ~ AIKl, while the quantities </><tl have to be considered only if Q ~ ElK).

We assume that each layer is perfectly bonded to the adjacent ones, so that the following
conditions hold:

K = 1,2, ... , N - 1.

(9)

2.2. Equilibrium equations
We derive the equilibrium equations using the principle of virtual displacements. It

can be verified that the introduction of eqns (4) into the virtual work expression leads to
the following equation:
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(10)

where N;K), M~~), MW are the generalized stresses:

(ex -# f3), (Ila)

fh(K)12 ( (K») ( (K) )
N(K) - t(K) 1- - 1_ - dr(K)

3 - 3 R(K) R(Kl""
-h(K)/2 I 2

(lIb)

fh(Kl/2 (r(K»R ( r(K) )
M(K) = t(K) -"'-- 1- -'"- dr(K)

Ra a R' R(Kl'"
_h(Kl/2 • P

(ex =1= f3) R = 1, ... , C(K" (I2a)

fh(KI/2 (r(K»S ( (K») ( (K) )
M(K) - t(K) -"'-- 1- - 1- -. dr(K) S = 1 C(K) - 1

S3 - 3 S' R(K) R fK)'" , ... , ,
_h,Kl/2 • 1 2

(I2b)

t~K) being the traction vector on the surface element of normal e~K), and t\K) the traction
vector on the surface element of normal n(K).

In eqn (IO) we have used the following relations:

dQ(K) = a\K)aff) dB\K) de~K), (13a)

(13b)

r(K) ) ( r(K»)-'"- 1- -'"_. dQ(K) dr(K)
R(f) R~K) ""

(Be)

A~K) dB~K)
---
A a dBa

(no sum on ex), (13d)

which give the surface element of Q(K), the surface element at (fK
) = const, the volume

element of the Kth layer and the transformation between the two orthogonal curvilinear
coordinates e~K) and eao The components of the generalized stresses with respect to e~Kl, n(K)

are given by :

(14a)
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fh(Kl/2 (K) ( (K») ( (K») (K)
(133 1- R(K) 1- R(K) d(

_h(K)/2 1 i

(l4b)

(I4c)

S = 1, ... , C(Kl_l, (I5c)

{M/n =

{M/n=

{MW} =

R = 1, ... , C(K),

R = 1, .. . ,C(K),

(l5a)

(I5b)

at) being the components of the Cauchy stress tensor.

2.3. Constitutive equations
We assume that the layers of the laminated shell are orthotropic with elastic symmetry

with respect to the middle surface and with material principal axes I\Kl, i~K) obtained rotating
the axes elK), e~K) by an arbitrary angle about iW).

The constitutive equations for the Kth layer are written as :

ulK) = CIK) e(K)
IJ Ijlm 1m (16)

where cWJ. are the stiffness coefficients of the layer and el~) are the components of the
infinitesimal strain tensor:
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e}~) = 1(e}K) •Vu(K)e~) +e~)' VU(K)Te}K).
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(17)

The equations for the terms in the material stiffness matrix and their transformation
due to a rotation about fi(K) will not be given here, but they can be found in the literature
(see, for example, Vinson and Sierakowski, 1987; Graff and Springer, 1991).

By using eqns (4)-(8), (11)-(12), (14)-(17), we obtain the generalized constitutive
equations in the following form:

3 ('(AI 2 OK-I)

N1K
) = L Cb~l)K) + L L Cb-'i1iadk~) + L q~3d~K;,

j~ I R~ I a= I s~ I

(18a)

3 cK! 2 cK-1)
M~ = L CkK6a;l~K) + L L C<;lapdCfpl + L Ck~a3d~K;, R = 1, ... , C(K), (18b)

i~ I T~ I p~ I s~ I

3 OK) 2 C K- I )

MW = L C~~\;I~K)+ L L C~-'i13adk~)+ L C~'iJ33d~f1, s= 1, ... ,C(K)-I, (18c)
i= 1 R~ 1 a~ I u= 1

where C~J,ij are second order tensors defined by the equations:

2.4. Penalty model
Equation (10) sets equal to zero the first variation ofthe functional of the total potential

energy, which is defined on the set K ofall admissible displacements for the laminated shell.
Let H denote the set ofall admissible displacements for the layers, assumed as disconnected
from one another. Then K is the subset of H that contains the displacements satisfying the
interface constraints (9). We wish to include the constraints (9) into the variational statement
(10) by means of the penalty method (Reddy, 1992a, b).

Consider the following functional on H:

liN-I (R _d(K) -h(K)/2)(R _d(K) -h(K)/2)
n - n " A (K). A (K) I 2 d(} d(}

~ - + -2 t... LlU LlU R R a,a2 , 2,
1] n K~ 1 I 2

(20)

where n is the potential energy of the layers, assumed as disconnected from one another,
L1U(K) is the relative displacement defined by eqn (9) and 1] is a positive parameter.

It can be shown (see, for example, Carey and Oden, 1983; Reddy, 1992a, b) that by
considering a sequence of values of 11 which converges to zero, the result :

(21)

where no is the minimum of n on K. Minimizing n~ in H, for a small value of 11, is usually
referred to as the penalty method (Carey and Oden, 1983; Reddy, 1992a, b).

The penaltly technique is particularly convenient in the present case because it allows
us to obtain an approximation of the interlaminar stresses (or the Lagrange multipliers),
which can be computed from the equations:

where

K = 1,2, ... , N - I (22)
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(23)

The functional Il~ can be interpreted as the total potential energy ofan auxiliary elastic
system (penalty model), in which the layers are connected by radial and tangential springs
instead of being perfectly bonded. The quantity '7 is also called the penalty parameter and
represents the inverse of the stiffness of these springs in the penalty model.

3. STRESS CALCULATION

We compute the inplane components (oW, (JW, (JW) of the stresses in a generic layer
from the constitutive equations,

(JW = CWI IsW + CW22SW+ CW3 3SW + 2C\~\ 2SW ,

(JW = Ci~\ IsW + CW22SW+ CW3 3S<,,~) + 2Ci~\ 2SW ,

(JW = cW, IsW + CW22SW+ CW3 3SW + 2C\~\ 2SW .

(24a)

(24b)

(24c)

The strain components sif) are computed from eqns (4), (17).
For what concerns transverse stresses «(JW, (JW, (JW), we observe that the values of

such stresses derived from the strains via constitutive equations, which we denote by

iJW = 2CWI 3SW + 2CW23SW,

iJi~) = 2CWI3SW+CW23SW,

iJW = CWll sW + CW22SW+ CW33SW + 2CWI2SW,

(25a)

(25b)

(25c)

are not continuous across the interfaces of layers with different mechanical properties. On
the other hand, the theory formulated in the previous sections gives us an approximation
of the effective interlaminar values of transverse stresses. Starting from this consideration,
we set in each layer:

(26)

where cTi~) are additional stress fields, which give zero stress resultants and moments and
let (J~~) coincide with .W- 1) for (K) = -h(K)j2 and with ;.iK) for (K) = h(K)j2 (see eqns (22),
(23». In detail, we express the fields cTi~) in the form:

B(/o;,I+ 1

cTW = C~3 + L C~3«((K»Q,
Q~I

and compute the coefficients C~3' C;3' C~3' C~3 from the equations:

(27a)

(27b)

(27c)

(28a)

fh(Kl/2 • K «((K»S ( (K»)( CK)) (K)_(J< )--- 1- - 1- -- dY - 0
.3 S' R(K) R(K)"_h(Kl/2 . I 2

S= I, ... ,A(K)-I, (28b)
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aW = A~K-I)-UW

aW = A~K) - U~~)

for (K) = - h(K)/2,

for (K) = h(K)/2,
(28c)

(28d)

fh(Kl/Z • K) «((K)S ( _ (K))( _ ,(K)) (K)_

0"~3 Sf 1 R(K) 1 R(K) d' - 0
-h(K)/Z • 1 Z

S= 1, ... ,B(K)-I,

(29a)

(29b)

a~~) = Xf- 1) -uW
aW = W'l-uW

for ,(K) = - h(K) /2,
for ,(K) = h(K) /2.

(29c)

(29d)

It is clear that the stress fields oW given by eqns (25)-(29) are continuous across the
thickness of the laminated shell.

4. FINITE ELEMENT APPROXIMAnON

We discretize the middle surface of the laminated shell into a collection of M two
dimensional finite elements. The generalized displacements (vlK), 4J~~), 4JttD are expressed,
over each element, as a linear combination of two-dimensional interpolation functions t/JL

and the nodal values «V\K) L, (4J~~)h, (4Jttlh) :

NPE

vlK) = L (vlK)ht/JL,
L=l

NPE

4J~~) = L (4J~~)Lt/JL'
L=l

NPE

4Jttl = L (4Jttlht/JL,
L~l

K= 1,2, ... ,N; P= 1, ... ,A(K); Q= 1, ... ,B(K)

(30a)

(30b)

(3Oc)

where NPE is the number of nodes per element. By using the isoparametric formulation,
we set

NPE

(), = L «(),ht/JL

L=!
(31)

«()I> ()zh being the global coordinates of the node L.
Setting the first variation of the functional (20) equal to zero and making use of eqns

(30), (31), we obtain the equilibrium equations of the discretized penalty model in the
following form :

(32)

where {U} is the global nodal displacement vector, [K) is the stiffness matrix of the
unconstrained problem (layers disconnected) and 1/'1[Kp ] is the part of the global stiffness
matrix due to the springs connecting the layers in the penalty model. The finite element
proposed is characterized by a number NDF= 3·N+I:~~1 (A(K)+B(K) of degrees of
freedom per node. Hence it leads to a large system ofequations, especially when the number
of layers is large. However, the computational effort can be reduced by grouping together
some layers to form a unique substructure. Moreover, it has to be remarked that the penalty
model offers the possibility to easily compute accurate interlaminar stresses and hence it
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can be conveniently used when an accurate evaluation of the stress field present in a
laminated shell is required.

5. NUMERICAL RESULTS

In order to show the features of the penalty finite element developed herein, we present
numerical results for displacements and stresses of simply supported, cross ply laminated
spherical shells under uniformly distributed transverse load. The transverse load p is split
into two equal parts p- and p+ acting at the top and the bottom surface of the shell.

The elastic properties with respect to the principal material axes used in all the examples
are:

E] = 25E2 , E 3 = E 2 ,

G I3 = G l2 = 0.5E2 , G23 = 0.2E2 ,

V I 2 = VI) = V23 = 0.25.

(33a)

(33b)

(33c)

A coordinate system with the origin at the center of the middle surface of the shell is
used and the lengths of all the lines of curvature are assumed to be equal
(/1 = 12 = 1= const). Owing to symmetry only a quarter of the shell is modelled. The
boundary conditions imposed on the supported sides and on the symmetry axes are:

on (J\ = 1/2:

on ()2 = 1/2:

on ()I = 0:

on ()2 = 0:

V(K) - V(Kl - A-.(K) - A-.(K) - °
2 - 3 - 't'P2 - 't'Q3 - ,

V\Kl = vjKl = ¢W = ¢<tl = 0,

V\Kl = ¢~K? = 0,

viKl = ¢~Ki. = 0,

(34a)

(34b)

(34c)

(34d)

K= l,2, ... ,N; P= 1, ... ,A(Kl; Q= l, ... ,B(K).

The following normalizations are used in presenting the results:

E
(UI> U2) = p; (UI> U2),

h 2

(0'1 I> O'n, 0'12) = pl2 (U I I> Un, UI2),

(35a)

(35b)

(35c)

(35d)

(35e)

In each of the examples considered we used 16-node cubic finite elements and the
Gauss integration formula with four points to compute both the unconstrained stiffness
matrix [K) and penalty stiffness matrix 1/'1[Kp]. With these quadrature rules we did not
observe locking due to shear-bending coupling, extension-bending coupling and the presence
of the penalty terms in the global stiffness matrix. In all the examples, we computed stress
distributions through the thickness of the shell by post-processing the results of the penalty
theory via the procedure described in Section 3.

5.1. Simply supported (0/90) laminated spherical shell under uniform load
This example was chosen to assess the convergence of the penalty finite element model

with refinements of the mesh and decreasing values of the penalty parameter,.,. The center
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Table 1. Center deflections and interlaminar stresses for a simply supported (0/90) laminated shell under
uniform load. Convergence study of the penalty finite element solutions. R/l = I

l(h = 100 l(h = 10

fi fi
! Mesh 10- 1 10- 2 10- 3 10- 4 10- 5 10- 1 10- 2 10- 3 10- 4 10- 5

2 u3 0.0716 0.0719 0.0719 0.0719 0.0719 5.9139 6.0331 6.0705 6.0712 6.0713
x 6 31 0.2744 0.0299 0.0286 0.0284 0.0284 0.2513 0.2046 0.1935 0.1927 0.1926
2 6 32 0.2268 0.0158 0.0145 0.0144 0.0144 0.0284 0.0598 0.0493 0.0486 0.0485

4 u3 0.0711 0.0719 0.0718 0.0718 0.0718 6.3841 6.0638 6.0712 6.0744 6.0713
x 6 31 0.1096 0.0464 0.0385 0.0379 0.0379 1.0922 0.1529 0.1910 0.1896 0.1895
4 6 32 0.3040 0.0319 0.0241 0.0236 0.0235 0.1281 0.1579 0.0473 0.0463 0.0462

6 u3 0.0753 0.0718 0.0718 0.0718 0.0718 6.2234 6.0569 6.0704 6.0712 6.0712
x 6 31 0.2469 0.0557 0.0365 0.0357 0.0356 0.7471 0.2012 0.[934 0.1892 0.1892
6 6 32 0.1885 0.0414 0.0223 0.0215 0.0214 0.0334 0.0745 0.0481 0.0461 0.0461

Reddy (1984c): U3 = 0.0718 for l(h = 100, U3 = 6.054 for l/h = 10.

Table 2. Center deflections and interlaminar stresses for a simply supported (0/90) laminated shell under
uniform load. Convergence study of the penalty finite element solutions. R(l = 10

l(h = [00 l/h = 10
fi fi

! Mesh 10- 1 10- 2 10- 3 10- 4 10- 5 10- 1 10- 2 10- 3 10- 4 10- 5

2 u3 5.5770 5.5457 5.5465 5.5466 5.5467 18.192 18.636 18.676 18.678 18.679
x 6 31 16.953 0.2697 0.2614 0.2607 0.2606 0.2766 0.3028 0.2901 0.2891 0.2891
2 6 32 13.649 0.1254 0.1172 0.1165 0.1165 0.2293 0.2575 0.2450 0.2241 0.2440

4 u3 5.5262 5.5418 5.5428 5.5427 5.5428 17.935 18.636 18.674 18.678 18.678
x 6 31 0.6822 0.2378 0.2216 0.2204 0.2203 0.2627 0.2416 0.2853 0.2838 0.2837
4 6 32 0.7696 0.0943 0.0780 0.0769 0.0768 0.2648 0.1944 0.2403 0.2388 0.2387

6 u3 5.5334 5.5417 5.5442 5.5426 5.5427 18.864 18.632 18.674 18.678 18.678
x 1f 31 0.3983 0.2320 0.2054 0.2043 0.2042 0.7370 0.2744 0.2854 0.2832 0.2830
6 6 32 0.3273 0.0885 0.0621 0.0609 0.0609 2.4784 0.2751 0.2404 0.2382 0.2380

Reddy ([984c): U3 = 5.5428 for l(h = 100, U3 = 19.065 for l/h = 10.

deflections and the interlaminar shear stresses computed for different values of R/I and I/h
are shown in Tables I and 2. The results in terms of center deflections are compared with
those obtained by Reddy (1984c). The interlaminar shear stresses 0"31 were computed at
(8 1 = 0.5/, 82 = 0) while the interlaminar shear stresses 0"32 were computed at
(8 1 = 0,8 2 = 0.5/). We set A = 1, B = 0 in (2) in each of the two layers.

Tables I and 2 show that the penalty finite element results in terms of center deflections
converge to values close to the solutions given in Reddy (1984c). These were obtained by
using a linear inplane displacement field through the whole thickness of the shell (single
layer first order shear deformation theory). Their agreement with the present results was
to be expected since it is known that single layer theories accounting for shear deformation
lead to satisfactory results in terms of displacements. Tables I and 2 also show that the
interlaminar stresses given by the present theory converge to constant values as ii converges
to zero. The through-the-thickness distributions of the inplane normal stresses (111, (122 and
of the transverse shear stresses (113' (123 are shown in Figs 2 to 5 for I/h = 10; R/I = 1,10
(R = R I = R 2). These distributions were obtained using a 6 x 6 uniform mesh of cubic
elements over a quarter of the shell and a penalty parameter ii = 10- 5.

5.2. Simply supported (0/90/0) laminated spherical shell under uniform load
Figures 6 and 7 contain the distributions throl,1gh laminate thickness of the inplane

normal stress (111 and transverse shear stress 0" 13 for the case (1/R 1 = 1/R2 = 0) and for
spherical shells characterized by thickness-to-radius ratios R/I = 10, R/I = 1. The aspect
ratio considered is l/h = 10. The results for the plate were compared with those obtained
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Fig. 3. Through-the-thickness distribution of the inplane normal stress 0"22 for a simply supported
(0/90) laminated spherical shell under double-uniform load.

Fig. 4. Through-the-thickness distribution of the transverse shear stress 0" 13 for a simply supported
(0/90) laminated spherical shell under double-uniform load.
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(0/90) laminated spherical shell under double-uniform load.
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by Reddy et al. (1989). For the theory presented in this work, we set A = 1, B 0 in the
expression (2) of the displacement field of each layer. We also used the mesh of 6 x 6 cubic
finite elements over a quarter of the laminate and a penalty parameter ii = 10- 3. It can be
observed that the present theory is in close agreement with the General Laminate Plate
Theory (GLPT) of Reddy (1987) in the case of the plate.

5.3. Simply supported (0/90/90/0) laminated spherical shell under double uniform load
This example was chosen to evaluate the influence of the order of the series expansions

(2) of the displacement components on particular displacements and stresses in 0/90/90/0
laminated spherical shells. We set A = 1, B = 0 in the two 0 layers and model the two center
90 layers as a unique substructure. In the expression (2) of the displacement field of this
substructure we set B = 0 and let A vary over 1,2,3. A mesh with 6 x 6 cubic finite elements
over a quarter of the laminate is used and the penalty parameter is taken to be if = 10- 3.

For R/I = I and I/h = 3,10 we show, in Figs 8-11, the through-the-thickness dis
tributions of the inplane displacements u I and U2 at particular points. In this and in the
subsequent figures, the case A(l) = A(2) = A(3) = I is denoted by LLL (Linear inplane
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0.3
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.-----•• LQL

0.1 ---- LCL
.r:.

~
I

-0.1 90·

-0.3
O·

INPLANE DISPLACEMENT Ul

Fig. 8. Through-the-thickness distribution of the inplane displacement Ul for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/l = 1.
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Fig. 9. Through-the-thickness distribution of the inplane displacement U2 for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/l = 1.
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Fig. 10. Through-the-thickness distribution of the inplane displacement U I for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/f = 1.
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Fig. 11. Through-the-thickness distribution of the inplane displacement U2 for a simply supported
(0/90/90/0) laminated spherical shell under double·uniform load, R/f = I.

displacement fields in each of the three layers), the case A(I) = 1, A(Z) = 2, A(3) = 1 is
denoted by LQL (Linear·Quadratic-Linear inplane displacement fields), the case A(l) = 1,
A( 2

) = 3, AI}) = 1 is denoted by LCL (Linear-Cubic-Linear inplane displacement fields).
The distributions of the transverse shear stresses 0"13 and O"Z3 are shown in Figs 12-15 for
R/l = 1; l/h = 3,10. For R/l = 1,I/h = 3 we also give in Figs 16--18 similar distributions
of the normal stresses O"j" 0"21, 0"33' In particular, the distribution of the transverse normal
stress 0"33 was obtained by setting A = B = 1 in each layer.

It is evident from Figs 12-17 that the influence of the orders of the series expansions
of the displacement components is significant only for thick shells (l/h < 10) and that
a piecewise linear distribution over the laminate thickness of the inplane displacement
components (Uj and uz) is sufficient to obtain accurate results for l/h ~ 10.

6. CONCLUSIONS

The penalty model for laminated composite shells presented in this work can be used
to compute both displacements and stresses, with no limitations in the magnitude

$AS 30:24-8
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Fig. 12. Through-the-thickness distribution of the transverse shear stress 11, J for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/l = 1.

Fig. 13. Through-the-thickness distribution of the transverse shear stress 1123 for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/l = I.
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Fig. 14. Through-the-thickness distribution of the transverse shear stress 111 J for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/f = I.
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(0/90/90/0) laminated spherical shell under double-uniform load, R/I = 1.
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Fig. 16. Through-the-thickness distribution of the inplane normal stress 0011 for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/I = 1.
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Fig. 18. Through-the-thickness distribution of the transverse normal stress (J 33 for a simply supported
(0/90/90/0) laminated spherical shell under double-uniform load, R/I = 1.

of the thickness-to-radius and thickness-to-Iength ratios. The flexibility of the adopted
displacement representation allows one to fit the theory to the problem to be solved in an
optimal way. Furthermore, interlaminar stresses are easy to compute, since they represent
the Lagrange multipliers, which can be computed in a direct way. The numerical results
obtained by the finite element method show good convergence of the discretized penalty
model with mesh refinements and decreasing value of the penalty parameter. The agreement
between the finite element results and the solutions given by Reddy (1984c) is good. Due
to the use of the penalty method to enforce the bonding constraint between layers, the
proposed theory can be easily extended to relax this constraint and include delamination
effects.
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